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Spectral-Domain Calculation of Microstrip
Characteristic Impedance

JEFFREY B. KNORR, meMBER, 1EEE, AND AHMET TUFEKCIOGLU, STUDENT MEMBER, IIEE

Abstract—This paper presents a hybrid-mode solution for the
characteristic impedance of microstrip on lossless dielectric sub-
strate. A solution to the hybrid-mode equations is obtained by apply~
ing the method of moments in the Fourier transform domain.
Numerical results are presented showing the frequency dependence
of both wavelength and characteristic impedance for single and
coupled strips. These results are compared with those of other
investigators in the low-frequency range.

I. INTRODUCTION

HE spectral-domain technique is a powerful, accurate,
numerically efficient approach for analysis of planar
transmission line structures. This technique was first
suggested by Itoh and Mittra [17] and has been applied to
calculate the dispersion characteristic of a single slot [17,

the dispersion characteristic of a single microstrip [2], -

[3], and the resonant frequency of rectangular microstrip
resonators [47] from which a caleulation of microstrip open
circuit end effect may also be obtained. The dispersion
characteristic and characteristic impedances of coupled
slots and coplanar strips have also been obtained using this
approach [5].

Miecrostrip is a structure which has been studied by
many investigators. There are numerous quasi-static
analyses and a lesser number of frequency-dependent
analyses which have been carried out. Among these
frequency-dependent analyses is one by Krage and Haddad
[6] which appears to be the only study to include an in-
vestigation of the frequency dependence of microstrip
characteristic impedance. Results are presented for only a
relatively low near-quasi-static frequency range (A >
0.1)\;), however.

The purpose of this paper is to present the results of a
study of the frequency dependence of the characteristic
impedance of microstrip using the spectral-domain ap-
proach. The method whereby the spectral-domain ap-
proach may be extended to calculate characteristic
impedance will first be described. Numerical results show-
ing the variation of characteristic impedance over a wide
frequency range will then be presented, and it will be

Manuscript received December 13, 1974; revised April 30, 1975.
This work was supported in part by the Office of Naval Research
through the Naval Postgraduate School Foundation Research
Program. Computations were carried out at the W. R. Church
Computer Center, Naval Postgraduate School.

J. B. Knorr is with the Department of Electrical Engineering,
Naval Postgraduate School, Monterey, Calif. 93940.

A. Tufekcioglu was with the Naval Postgraduate School, Monte-
rey, Calif. 93940. He is now with the Turkish Navy Tersane cad.
277/1, Aydin Blok, Géleiik, Turkey.

shown that these results converge to those of other inves-
tigators in the low-frequency range.

II. DISPERSION CHARACTERISTICS OF
MICROSTRIP ON A LOSSLESS
DIELECTRIC SUBSTRATE

To calculate the characteristic impedance of microstrip
by the spectral-domain approach, it is first necessary to
calculate the dispersion characteristic. The following
discussion is included to provide an introduction to the
method of analysis and to further reference the results of
this study to those of other authors.

The spectral-domain dispersion analysis of microstrip is
discussed in [2] and will be outlined only briefly here.
With reference to Fig. 1, the microstrip field is expressed
as a linear combination of TE and TM mcdes charac-
terized by

EZi(x’y;z) = kci%ie(%y)@” (13;)
Hzi(x,y,z) = kciﬁ‘ﬁih(z;y)ew (lb)

where k.2 = v 4+ k2, 7 denotes the appropriate region,
and the ¢; are unknown scalar potential functions. Apply-
ing boundary conditions at y = 0 and y = D leads to a
set of boundary equations which still contain the ¢:(z,y).
‘Although the ¢; are unknown, their Fourier transforms,
®;(a,y), with respect to & can be found, and thus the
boundary equations are transformed and the general
solutions for the &;(a,y) are substituted. Extensive al-
gebraic manipulation of the resulting equations leads to
the coupled set

Gi(e8) g (@) + Ge(a,B) Js(a) = &.(a)
G3(ayﬁ)<gx(a) + G4(a,ﬁ)5z(a) 8z(a)

where « is the transform variable and &:(e) and J;(a) are
the transforms of the electric field and the surface current
at ¥ = D. We next define the inner product

(2a)
(2b)

+o0

(4(a),B()) = A (o) B*(a) do (3)
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and take the inner product of (2a) and (2b) with weight-
ing functions W;(a). If we choose
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Fig. 1. Microstrip on a dielectrie substrate.
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Wi(e) = gu(a) (4a)
Wa(a) = gs(a) (4b)
we obtain
(G192:9:) + (God29e) = 0 (5a)
(G199:) + (G19:,9:) = 0. (5b)

That the right-hand side of these equations is zero follows
from Parseval’s theorem since electric field and surface
current at y = D are orthogonal in the space domain.

Equations (5a) and (5b) are exact. The G:(a,8) reflect
substrate thickness, dielectric constant, and frequency
while strip widths and current distributions determine the
g’s. A moment solution of (5) can be obtained by expand-
ing 9. and 9. in a known set of basis functions and solving
the resulting determinant. Various choices of bases have
been considered by the authors and in [2]. Accurate
results are obtained by neglecting transverse current
(g-(a) = 0) and assuming that longitudinal current is
uniformly distributed. For simplicity and computational
efficieney, the current has been assumed z directed and
uniformly distributed in this study.

Fig. 2 shows the free space-to-microstrip wavelength
ratio for a -single strip and Fig. 3 shows the same ratio for
the odd and even modes of coupled strips. Also shown are
theoretical results published by Krage and Haddad [67],
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Fig. 2. Wavelength and characteristic impedance versus frequency
for a single microstrip. ¢ = 10, W/D = 1. Present method:
; Krage and Haddad: ——; Wheeler: — —.
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Wheeler [7], and Bryant and Weiss [8]. Where the
present results overlap with those of [6], very good
agreement is evident which tends to confirm the accuracy
of both methods. The frequency-dependent analyses show
an increasing free space-to-microstrip wavelength ratio
with increasing frequency due to the relatively higher
proportion of power in the dielectric. The inaccuracy of
the quasi-static results at high frequencies is evident.

It is always desirable to compare theory with experi-
ment, and this comparison appears in Figs. 4 and 5. In
Fig. 4 the theoretical effective dielectric constant of a
single microstrip is compared with data published by
Getsinger [97]. In Fig. 5 the theoretical wavelength ratios
for the odd and even modes of coupled microstrips are
compared with data published by Gould and Tolboys
[107]. In all cases the agreement between theory and ex-
periment is better than 2 percent although the data from
[107] show a constant offset. We cannot offer any explana-
tion for this discrepancy. Getsinger [117] has obtained a
somewhat better fit to these same data by using his
approximate dispersion relation, but uses an empirical
factor to do so.

III. CHARACTERISTIC IMPEDANCE OF
MICROSTRIP ON A LOSSLESS
DIELECTRIC SUBSTRATE

The extension of the spectral-domain technique to
calculate the characteristic impedance of microstrip
proceeds as follows. We again neglect transverse current
and define

2P av,
Zy; = ng—g (6a)
for a single strip or
Pav
Zoi = T: (6b)

for coupled strips with reflection symmetry where I, is the
total z-directed strip current. The average power is cal-
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Fig. 3. Free space-to-microstrip wavelength ratio versus frequency Fig. 4. Effective dieleetric constant versus frequency for a single

for coupled microstrips. ¢ = 10, W/D = 1, S/D = 0.4. Present
method: ——; Krage and Haddad: ——; Bryant and Weiss: — —.

microstrip. ‘¢ = = 0.050 in. Present

method:

10.185, W/D = 0.2. D
; Getsinger’s data: O.
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Fig. 5. Microstrip-to-free space wavelength ratio versus frequency
for coupled microstrips. ¢« = 9.7, W/D = 0.3, D = 0.025 in.
Present method: ; Gould and Tolboys’ data: O.

culated as
Pu = 3 Re / f (BH — BHY dedy  (7)

where the transverse fields may be found from (1) and are
thus given in terms of the unknown ¢:(2,y). Parseval’s
theorem may be applied, however, to obtain

1 +w st
Pac=p-Re [ [ [lap)iet(ay)

— & (a,y)3.*(oy) Jdy da  (8)

where the seript quantities denote the transforms of the
fields and are given in terms of the ®,(a,y). At this point
the general solutions for the ®, may be substituted and
integration with respect to y can be accomplished ana-
Iytically. This leaves an equation of the form

1 + 00
Poe=7 [ 9@ da (9)
™ -0
which is evaluated numerically in each of the two regions.
Fig. 2 shows computed results for a single strip and
Fig. 6 shows the characteristic impedances of the odd and
even modes of coupled strips. The results again agree well
with those from [6] where there is overlap. The increase of
characteristic impedance with frequency, which appears to
have been first discovered by Krage and Haddad, is
verified by the present analysis.
There is some latitude in the definition of characteristic
impedance for a structure such as microstrip. Another
possible definition of characteristic impedance is given by

V2(0)
Zyy = ———= 10
"= 5P (10)
for a single strip where V(0) ic given by
D
V) = — [ B0y dy a
0

and is the voltage between the center of the strip and the
ground plane. It is interesting to compare the results
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Fig. 6. Characteristic impedance versus frequency for coupled
microstrips. ¢ = 10, W/D = 1, §/D = 0.4. Present method:
; Krage and Haddad: ; Bryant and Weiss: — —.
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Fig. 7. Characteristic impedance versus frequency for a single
microstrip using several definitions of impedance. ¢. = ¢, W/D = 0.5.

obtained using (11) with those obtained 1sing (6a).
Fig. 7 shows results for a single strip. Also shown is the
impedance from [8]. It is evident that the clefinition of
impedance based upon strip eurrent converges to the quasi-
static characteristic impedance Z,, which is defined in
terms of statie capacitance. In all probability, the reason
that Zy, does not converge to Z, is that V(0) is sensitive
to the assumed distribution of surface current while the
total current Iy, used in (6a) is not. A better approxima-
tion (recall a uniform distribution was assumed) to the
surface current such as g.(z) = [(W/2)? — 22 ]1| 2| <
W/2, would probably improve the result obtained using
(10). Finally, it is to be noted that the geometric mean of
the two curves in Fig. 7 gives the characteristic im-
pedance defined by V(0)/lo, = (Zy,Z0i) V2

IV. CONCLUSIONS

A spectral-domain technique for analysis of single and
coupled microstrips has been deseribed. It has been shown
that this method can be successfully implemented com-
putationally to accurately calculate characreristic im-
pedance as well as wavelength as a function of frequency.
The computational efficiency is quite good and, for a
given frequency, the computations (wavelength and im-
pedance) take about 2.5 s on the IBM 360.

The numerical results presented here have been shown
to be in agreement with those of other investigators at
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low frequencies. Considerable departure from the quasi-
static results has been shown to occur with increasing
frequency, however. The analysis verifies the rise of charac-
teristic impedance with frequency as predicted by Krage
and Haddad [6].
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Circular Waveguide with Sinusoidally Perturbed Walls

OMAR RAFIK ASFAR anp ALI HASAN NAYFEH

Abstract—Uniform second-order asymptotic expansions are
obtained for the propagation of TM waves in a perfectly conducting
circular waveguide with sinusoidally perturbed walls using the method
of multiple scales. The analysis concerns the interaction of two prop-
agating modes satisfying the resonance condition imposed by the
periodicity of the waveguide walls. Two cases of resonance are

treated as well as the case of decoupled modes. In the first case:

resonance occurs whenever the difference between the wavenumbers
of the two interacting modes is nearly equal to the wall wavenumber,
while in the second case the difference is nearly equal to twice the
wall wavenumber. The results of the theory are then applied to the
design of a mode coupler.

I. INTRODUCTION

AVEGUIDES having periodic structure find appli-

cation in such microwave devices as the magnetron,
the traveling-wave amplifier, and the linear accelerator
[13. In this paper we consider the case where the peri-
odicity is a small parturbation of the waveguide wall
which results in its use as a mode coupler.

We consider the case of propagation of TM modes in a
perfectly conducting circular waveguide whose wall is
sinusoidally perturbed so that the radius of the cross
section of the guide at an axial location 2’ in a cylindrical
coordinate system (p’,¢,2’) is given by

R(Z') = Ro(1 + esin k,'2") (1)
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where R, is the average or unperturbed radius of the guide,
k.’ is the wavenumber of the wall perturbation, and € is a
dimensionless parameter much smaller than unity and
equal to the ratio of the amplitude of the periadic pertur-
bation to the average radius R.

Marcuse and Derosier [ 2] treated the problem of a round
dielectric waveguide with periodic wall corrugations and
found that two guided modes are coupled if the difference
between their wavenumbers is equal to the wavenumber of
the wall k,’. In faet, other resonances are possible as our
analysis will show. They also confirmed the coupling
experimentally and observed complete power conversion
between the two modes. Marcuse used a combination of
the Galerkin procedure and the method of averaging in
order to obtain equations for the amplitudes of the
interacting modes [37]. Chandezon et al. [4] treated wave
propagation in a perfectly conducting guide with sinus-
oidally perturbed walls using the Rayleigh~-Schrodinger
technique to find a perturbation expansion in powers of ¢
for the case of a cylindrically symmetric TM mode
(3/9¢ = 0). They only considered the very special case
of resonance when the wavenumber of the excited mode is
equal to %k, with a correction to first order in ¢ only.

A first-order uniformly valid expansion for the case of a
parallel-plate waveguide with sinusoidal walls was ob-
tained by Nayfeh and Asfar [5] for two interacting modes
in the neighborhood of resonance that is given by the
condition

(2)



