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Spectral-Domain Calculation of Microstrip

Characteristic Impedance

JEFFREY B. KNORR, MEMBER, IEEE, AND AHMET TUFEKCIOGLU,

Abstract—This paper presents a hybrid-mode solution for the

characteristic impedance of rnicrostrip on Iossless dielectric sub-

strate. A solution to the hybrid-mode equations is obtained by apply-

ing the method of moments in the Fourier transform domain.

Numerical results are presented showing the frequency dependence

of both wavelength and characteristic impedance for single and

coupled strips. These results are compared with those of other

investigators in the low-frequency range.

L INTRODUCTION

T HE spectral-domain technique is a powerful, accurate,

numerically efficient approach for analysis of planar

transmission line structures. This technique was first

suggested by ltoh and Mittra [1] and has been applied to

calculate the dispersion characteristic of a single slot [1],

the dispersion characteristic of a single microstrip [2],

[3], and the resonant frequency of rectangular microstrip

resonators [4] from which a calculation of microstrip open

circuit end effeet may also be obtained. The dispersion

characteristic and characteristic impedances of coupled

slots and coplanar strips have also been obtained using this

approach [5].

Microstrip is a structure which has been studied by

many investigators. There are numerous quasi-static

analyses and a lesser number of frequency-dependent

analyses which have been carried out. Among these

frequency-dependent analyses is one by Krage and Haddad

[6] which appears to be the only study to include an in-

vestigation of the frequency dependence of microstrip

characteristic impedance. Results are presented for only a

relatively low near-quasi-static frequency range (i >

0. lk~), however.

The purpose of this paper is to present the results of a

study of the frequency dependence of the characteristic

impedance of microstrip using the spectral-domain ap-

proach. The method whereby the spectral-domain ap-

proach may be extended to calculate characteristic

impedance will first be described. Numerical results show-

ing the variation of characteristic impedance over a wide

frequency range will then be presented, and it will be
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shown that these results
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converge to those of other inves-

tigators in the low-frequency ra~ge.

II. DISPERSION CHARACTERISTICS OF

MICROSTRIP ON A LOSSLESi;

DIELECTRIC SUBSTRATE

To calculate the characteristic impedance of microstrip

by the spectral-domain approach, it is first necessary to

calculate the dispersion characteristic. The following

discussion is included to provide an introduction to the

method of analysis and to further reference the results of

this study to those of other authors.
The spectral-domain dispersion analysis of microstrip is

discussed in [2] and will be outlined only briefly here.

With reference to Fig. 1, the microstrip field is expressed

as a linear combination of TE and TM mc,des charac-

terized by

E.i (z,y,z) = kci!+i’ (z,y) eyz (la)

H,i (z,y,.z) = lcCi2@ih(*IV) e~’ (lb)

where kCi2 = -# + k~!, i denotes the appropriate region,

and the 4{ are unknown scalar potential functions. Apply-

ing boundary conditions at y = O and y = D leads to a

set of boundary equations which still contain the 4<(xjy).

“Although the @i are unknown, their Fourier transforms,

@i(a,y), with respect to z can be found, a Id thus the

boundary equations are transformed and the general

solutions for the Oi (a,y) are substituted. Extensive al-

gebraic manipulation of the resulting equations leads to

the coupled set

GI(a,i3)&(a) + G2(c2,P),%(cK) = I%(w) (2a)

G,(a,/3)$z(a) + G.i(q3)9z(a) = ~z(~) (2b)

where a is the transform variable and fh (a) and $;(~) are

the transforms of the electric field and the surface current

at y = D. We next define the inner product

(.4 (a) ,B(a) ) = ~+rn A (a) B*(a) G?U (3)
-m

and take the inner product of (2a) and (2b) with weight-

ing functions Wi (a). If we choose

Ty
pwjs ~

r, *
‘x

Fig. 1. Microstrip on a dielectric substrate.
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W,(a) =$.(CY) (4a)

w,(a) =$.(a) (4b)

we obtain

(Gl$,$.)+ (G2$2,$)=0 (5a)

(G$z,r%) + (G,%%) = O. (5b)

That the right-hand side of these equations is zero follows

from Parseval’s theorem since electric field and surface

current at g = D are orthogonal in the space domain.

Equations (5a) and (5b) are exact. The Gi(a,D) reflect

substrate thickness, dielectric constant, and frequent y

while strip widths and current dktributions determine the

$’s. A moment solution of (5) can be obtained by expand-
ing $X and $Z in a known set of basis fynctions and solving

the resulting determinant. Various choices of bases have

been considered by the authors and in [2]. Accurate

results are obtained by neglecting transverse current

(9a(~) = O) and assuming that longitudinal current is

uniformly distributed. For simplicity and computational

efficiency, the current has been assumed z directed and

uniformly distributed in this study.

Fig. 2 shows the free space-to-microstrip wavelength

ratio for a-single strip and Fig. 3 shows the same ratio for

the odd and even modes of coupled strips. Also shown are

theoretical results published by Krage and Haddad [6],
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Fig. 2. Wavelength and characteristic impedance versus frequency
for a single microstrip. e, = 10, W/D = 1. Present method:
—; Krage and Haddad: —; Wheeler: – —.
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Fig. 3. Free spats-to-microstrip wavelength ratio versus frequency
for coupled microstrips. e, = 10, W/D = 1, S/D = 0.4. Present
method: —; Krage and Haddad: —; Bryaat and Weiss: –—.

Wheeler [7], and Bryant and Weiss [8]. Where the

present results overlap with those of [6], very good

agreement is evident which tends to confirm the accuracy

of both methods. The frequent y-dependent analyses show

an increasing free space-to-microstrip wavelength ratio

with increasing frequency due to the relatively higher

proportion of power in the dielectric. The inaccuracy of

the quasi-static results at high frequencies is evident.

It is always desirable to compare theory with experi-

ment, and this comparison appears in Figs. 4 and 5. In

Fig. 4 the theoretical effective dielectric constant of a

single microstrip is compared with data published by

Getsinger [9]. In Fig. 5 the theoretical wavelength ratios

for the odd and even modes of coupled microstrips are

compared with data published by Gould and Tolboys

[10]. In all cases the agreement between theory and ex-

periment is better than 2 percent although the data from

[10] show a constant offset. We cannot offer any explana-

tion for this discrepancy. Getsinger [11] has obtained a

somewhat better fit to these same data by using his

approximate dispersion relation, but uses an empirical

factor to do so.

III. CHARACTERISTIC IMPEDANCE OF

MICROSTRIP ON A LOSSLESS

DIELECTRIC SUBSTRATE

The extension of the spectral-domain technique to

calculate the characteristic impedance of microstrip

proceeds as follows. We again neglect transverse current

and define

for a single strip or

P
Zoi = =’

Ior

(6a)

(6b)

for coupled strips with reflection symmetry where Io, is the

total z-directed strip current. The average power is cal-
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Fig. 4. Effective dielectric constant versus frequency for a single
microstrip. c, = 10.185, W/D = 0.2. D = 0.050 in. Present
method: —; Getsinger’s data: ().
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Fig. 6. Characteristic impedance verrmfi frequencj for coupled

Fig. 5. Microst~ip-to-free space wavelength ratio versus frequency
microstrips. e, = 10, W/D = 1, S/D = 0.4. Present method:

for coupled mlcrostrlps. e, = 9.7, W/D = 0.3, D = 0.025 in.
—; Krage and Haddad: —; Bryant and Weiss: – —.

Present method: —; Gould and Tolboys’ data: 0.

culated as

s

where the transverse fields may be found from (1) and are

thus given in terms of the unknown qh (z,g). Parseval’s

theorem may be applied, however, to obtain

– 8v(a,v)wz*(a,y) ] dv da (8)

where the script quantities denote the transforms of the

fields and are given in terms of the ~, (ajy). At thk point

the general solutions for the ~, may be substituted and

integration with respect to y can be accomplished ana-

lytically. This leaves an equation of the form

1

/

+m

P
‘“ = z . .

g(a) da (9)

which is evaluated numerically in each of the two regions.

Fig. 2 shows computed results for a single strip and

Fig. 6 shows the characteristic impedances of the odd and

even modes of coupled strips. The results again agree well

with those from [6] where there is overlap. The increase of

characteristic impedance with frequency, which appears to

have been first discovered by Krage and Haddad, is

verified by the present analysis.

There is some latitude in the definition of characteristic

impedance for a structure such as microstrip. Another

possible definition of characteristic impedance is given by

v’(o)
20. = —

2Pavg
(lo)

for a single strip where V(0) i~ given by

V(0) = – ~~ Eu(O,y) dy (11)
o

and is the voltage between the center of the strip and the

ground plane. It is interesting to compare the results
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Fig. 7. Characteristic impedance versus frequency for a single
microstrip using several definitions of impedance. e, = 9, W/D = 0.5.

obtained using (11 ) with those obtained using (6a).

Fig. 7 shows results for a single strip. Also shown is the

impedance from [8]. It is evident that the clefinition of

impedance based upon strip current converges to the quasi-

static characteristic impedance 2.. which is defined in

terms of static capacitance. In all probability, the reason

that 20, does not converge to 20. is that V(0) is sensitive

to the assumed distribution of surface currem t while the

total current 10Sused in (6a) is not. A better approxima-

tion (recall a uniform distribution was assumed) to the

surface current such as g.(x) = [(W/2) z — d]-11~, I z \ <

JV/2, would probably improve the result obtained using

(10). Finally, it is to be noted that the geomei,ric mean of

the two curves in Fig. 7 gives the characteristic im-

pedance defined by V(0) /10~ = (ZO,ZO;) 1/2.

IV. CONCLUSIONS

A spectral-domain technique for analysis oi’ single and

coupled microstrips has been described. It has been shown

that thk method can be successfully implemented com-

putationally to accurately calculate characl;eristic im-
pedance as well as wavelength as a function of frequency.

The computational efficiency is quite good and, for a

given frequency, the computations (wavelength and im-

pedance) take about 2.5 s on the IBM 360.

The numerical results presented here have been shown

to be in agreement with those of other inve~;tigators at
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low frequencies. Considerable departure from the quasi-

static results has been shown to occur with increasing

frequency, however. The analysis verifies the rise of charac-

teristic impedance with frequency as predicted by Krage

and Haddad [6].
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Circular Waveguide with Sinusoidally Perturbed Walls

OMAR RAFIK ASFAR AND ALI HASAN NAYFEH

Abstract—Uniform second-order asymptotic expansions are
obtained for the propagation of TM waves in a perfectly conducting
circufsr waveguide with sinusoidally perturbed walls usingthemethod
of multiple scales. The analysis concerns the interaction of two prop-
agating modes satisfying the resonance condition imposed by the
periodici~ of the waveguide walls. Two cases of resonance are
treated as well as the case of decoupled modes. In the first case
resonance occurs whenever the tierence between the wavenumbers
of the two interacting modes is nearly equal to the wall wavenumber,
while in the second case the difference is nearly equal to twice the
wall wavenumber. The results of the theory are then applied to the
design of a mode coupler.

I. INTRODUCTION

w AVEGUIDES having periodic structure find appli-

cation in such microwave devices as the magnetron,

the traveling-wave amplifier, and the linear accelerator

[1]. In this paper we consider the case where the peri-
odicity is c, mmll perturbation of the wn.veguide wall

which results in its use as a mode coupler.

We consider the case of propagation of TM modes in a

perfectly conducting circular waveguide whose wall is

sinusoidally perturbed so that the radius of the cross

section of the guide at an axial location z’ in a cylindrical

coordinate system (p’,@,z’) is given by

R(z’) = RO(l + 6 sin lcW’z’) ‘(1)
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where ROis the average or unperturbed radius of the guide,

kw’ is the wavenumber of the wall perturbation, and e is a

dimensionless parameter much smaller than unity and

equal to the ratio of the amplitude of the periodic pertur-

bation to the average radius Ro.

Marcuse and Derosier [2] treated the problem of a round

dielectric waveguide with periodic wall corrugations and

found that two guided modes are coupled if the difference

between their wavenumbers is equal to the wavenumber of

the wall k~’. In fact, other resonances are possible as our

analysis will show. They also confirmed the coupling

experimentally and observed complete power conversion

between the two modes. Marcuse used a combination of

the Galerkin procedure and the method of averaging in

order to obtain equations for the amplitudes of the

interacting modes [3]. Chandezon et al. [4] treated wave

propagation in a perfectly conducting guide with sinus-
oidally perturbed walls using the I&yleigh-Schrodinger

technique to find a perturbation expansion in powers of e

for the case of a cylindrically symmetric TM mode

(8/80 = O). They only considered the very special case

of resonance when the wavenumber of the excited mode is

equal to ~k~’ with a correction to first order in c only.
A first-order uniformly valid expansion for the case of a

parallel-plate waveguide with sinusoidal walls was ob-

tained by Nayfeh and Asfar [5] for two interacting modes

in the neighborhood of resonance that is given by the

condition

kw’ x k.’ – k.’ (2)


